Beam-induced oxidation of monomeric U(IV) species.
نویسندگان
چکیده
Uranium L(III)-edge X-ray absorption spectroscopy is often used to probe the oxidation state and coordination of uranium in environmental samples, and micrometre-sized beams can be used to spatially map the distribution of uranium relative to other elements. Here a variety of uranium-containing environmental samples are analyzed at both microbeam and larger beam sizes to determine whether reoxidation of U(IV) occurred. Monomeric U(IV), a recently discovered product of U(VI) reduction by microbes and certain iron-bearing minerals at uranium-contaminated field sites, was found to be reoxidized during microbeam (3 µm × 2 µm) analysis of biomass and sediments containing the species but not at larger beam sizes. Thus, care must be taken when using X-ray microprobes to analyze samples containing monomeric U(IV).
منابع مشابه
Relative reactivity of biogenic and chemogenic uraninite and biogenic noncrystalline U(IV).
Aqueous chemical extractions and X-ray absorption spectroscopy (XAS) analyses were conducted to investigate the reactivity of chemogenic uraninite, nanoparticulate biogenic uraninite, and biogenic monomeric U(IV) species. The analyses were conducted in systems containing a total U concentration that ranged from 1.48 to 2.10 mM. Less than 0.02% of the total U was released to solution in extracti...
متن کاملQuantitative separation of monomeric U(IV) from UO2 in products of U(VI) reduction.
The reduction of soluble hexavalent uranium to tetravalent uranium can be catalyzed by bacteria and minerals. The end-product of this reduction is often the mineral uraninite, which was long assumed to be the only product of U(VI) reduction. However, recent studies report the formation of other species including an adsorbed U(IV) species, operationally referred to as monomeric U(IV). The discov...
متن کاملProducts of abiotic U(VI) reduction by biogenic magnetite and vivianite
Reductive immobilization of uranium by the stimulation of dissimilatory metal-reducing bacteria (DMRB) has been investigated as a remediation strategy for subsurface U(VI) contamination. In those environments, DMRB may utilize a variety of electron acceptors, such as ferric iron which can lead to the formation of reactive biogenic Fe(II) phases. These biogenic phases could potentially mediate a...
متن کاملRapid Mobilization of Noncrystalline U(IV) Coupled with FeS Oxidation.
The reactivity of disordered, noncrystalline U(IV) species remains poorly characterized despite their prevalence in biostimulated sediments. Because of the lack of crystalline structure, noncrystalline U(IV) may be susceptible to oxidative mobilization under oxic conditions. The present study investigated the mechanism and rate of oxidation of biogenic noncrystalline U(IV) by dissolved oxygen (...
متن کاملImpact of microbial Mn oxidation on the remobilization of bioreduced U(IV).
Effects of Mn redox cycling on the stability of bioreduced U(IV) are evaluated here. U(VI) can be biologically reduced to less soluble U(IV) species and the stimulation of biological activity to that end is a salient remediation strategy; however, the stability of these materials in the subsurface environments where they form remains unproven. Manganese oxides are capable of rapidly oxidizing U...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of synchrotron radiation
دوره 20 Pt 1 شماره
صفحات -
تاریخ انتشار 2013